Presentation about decision tree, neural network, Bayes classifier

BY Yuxuan Luo

Include:1.Decision tree2.Neural network3.Bayes classifier4.Which is difficult to realize?

1.Decision tree

What is decision tree?

How decision tree works?

Like a watermelon, it has several features such as color, stripe, root, etc. Through these features, we can generally judge whether a good watermelon or not. From the picture beside, if the watermelon color is green, the root is curve and the patting sound is not clear we consider this watermelon is good.

Create a decision tree(ID 3) In order to create the most suitable decision tree, we

In order to create the most suitable decision tree, we should find out the best feature as the tree root node.

Calculate information entropy, information gain

$$Ent(D) = -\sum_{k=1}^{|\mathbf{y}|} p_k \log_2 p_k$$

$$Gain(D,a) = Ent(D) - \sum_{\nu=1}^{V} \frac{|D^{\nu}|}{|D|} Ent(D^{\nu})$$

$$Ent(D) = -\sum_{k=1}^{2} p_k \log_2 p_k = -\left(\frac{8}{17}\log_2\frac{8}{17} + \frac{9}{17}\log_2\frac{9}{17}\right) = 0.998$$

编号	6 泽	相茎	訪吉	纹理	防部	舳咸	好爪
5冊 5	三十	112.111		汉庄		元式公司	<u>x) /w</u>
1	有琢	塘缅	迎响	消晰	凹陷	便消	走
2	乌黑	蜷缩	沉闷	清晰	凹陷	硬滑	是
3	乌黑	蜷缩	浊响	清晰	凹陷	硬滑	是
4	青绿	蜷缩	沉闷	清晰	凹陷	硬滑	是
5	浅白	蜷缩	浊响	清晰	凹陷	硬滑	是
6	青绿	稍蜷	浊响	清晰	稍凹	软粘	是
7	乌黑	稍蜷	浊响	稍糊	稍凹	软粘	是
- 8	乌黑	稍蜷	浊响	清晰	稍凹	硬滑	是
9	乌黑	稍蜷	沉闷	稍糊	稍凹	硬滑	否
10	青绿	硬挺	清脆	清晰	平坦	软粘	否
11	浅白	硬挺	清脆	模糊	平坦	硬滑	否
12	浅白	蜷缩	浊响	模糊	平坦	软粘	否
13	青绿	稍蜷	浊响	稍糊	凹陷	硬滑	否
14	浅白	稍蜷	沉闷	稍糊	凹陷	硬滑	否
15	乌黑	稍蜷	浊响	清晰	稍凹	软粘	否
16	浅白	蜷缩	浊响	模糊	平坦	硬滑	否
17	青绿	蜷缩	沉闷	稍糊	稍凹	硬滑	否

We need to calculate all features' information entropy and information gain

Select feature $a_* = \arg \max Gain(D, a)$ as decision attribute Ent(color): $Ent(D^1) = -\left(\frac{3}{6}\log_2\frac{3}{6} + \frac{3}{6}\log_2\frac{3}{6}\right) = 1$ $Ent(D^2) = -\left(\frac{4}{6}\log_2\frac{4}{6} + \frac{2}{6}\log_2\frac{2}{6}\right) = 0.918$ $Ent(D^{3}) = -\left(\frac{1}{5}\log_{2}\frac{1}{5} + \frac{4}{5}\log_{2}\frac{4}{5}\right) = 0.722$ $Gain(D, color) = Ent(D) - \sum_{\nu=1}^{3} \frac{|D^{\nu}|}{|D|} Ent(D^{\nu}) = 0.998 - \left(\frac{6}{17} * 1 + \frac{6}{17} * 0.918 + \frac{5}{17} * 0.722\right) = 0.109$

En

Gai

Gai

Gai

$$t(\text{root}): \quad Ent(D^{1}) = -\left(\frac{3}{8}\log_{2}\frac{5}{8} + \frac{3}{8}\log_{2}\frac{5}{8}\right) = 0.955$$

$$Ent(D^{2}) = -\left(\frac{4}{7}\log_{2}\frac{4}{7} + \frac{3}{7}\log_{2}\frac{3}{7}\right) = 0.985$$

$$Ent(D^{3}) = -\left(\frac{2}{2}\log_{2}\frac{2}{2} + 0\log_{2}0\right) = 0$$

$$n(D, \text{root}) = Ent(D) - \sum_{\nu=1}^{3}\frac{|D^{\nu}|}{|D|}Ent(D^{\nu}) = 0.998 - (\frac{8}{17} * 0.955 + \frac{7}{17} * 0.985 + \frac{2}{17} * 0) = 0.142$$

$$n(D, \text{patting sound}) = 0.141 \quad Gain(D, \text{stripe}) = 0.381 \quad \text{Selected as decision attribute}$$

$$n(D, belly) = 0.0.289 \qquad Gain(D, \text{touch}) = 0.006$$

When we got the root , need further calculation to get second decision attribute

纹理=? Ent $(D^1) = -(\frac{7}{9}\log_2\frac{7}{9} + \frac{2}{9}\log_2\frac{2}{9}) = 0.764$ 清时 稍糊 模糊 $[\{1, 2, 3, 4, 5, 6, 8, 10, 15\}] [\{7, 9, 13, 14, 17\}]$ $\{11, 12, 16\}$ Ent(D^1 ,green)=-($\frac{3}{4}\log_2\frac{3}{4} + \frac{1}{4}\log_2\frac{1}{4}$)=0.811 $Ent(D^1, white) = -(0\log_2 0 + 1\log_2 1) = 0$ Ent(D^1 ,dark)=-($\frac{3}{4}\log_2\frac{3}{4} + \frac{1}{4}\log_2\frac{1}{4}$)=0.811 $Gain(D^{1}, color) = Ent(D) - \sum_{\nu=1}^{3} \frac{|D^{\nu}|}{|D|} Ent(D^{\nu}) = 0.764 - \left(\frac{4}{9} * 0.811 + \frac{1}{9} * 0.918 + \frac{4}{9} * 0.811\right) = 0.044$ $Gain(D^1, root) = 0.458$ $Gain(D^1, patting sound) = 0.331$ $Gain(D^1, touch) = 0.458$ $Gain(D^1, belly) = 0.458$ 纹理=?

One of three attributes can be the decision one And after calculation, finally get a decision tree.

Other method generate decision tree

1 C4.5 decision tree

C4.5 decision tree use Gain_ratio instead Gain to decide decision attribute

$$Gain_ratio(D, a) = \frac{Gain(D, a)}{IV(a)}$$

$$IV(a) = -\sum_{\nu=1}^{V} \frac{|D^{\nu}|}{|D|} \log_2 \frac{|D^{\nu}|}{|D|}$$

Select Gain(D,a) higher than average and max Gain_ratio(D,a) as decision attribute.

2 CART decision tree

CART decision tree use Gini_index instead Gain to decide decision attribute

$$Gini(D) = \sum_{k=1}^{|y|} \sum_{k' \neq k} p_k p_{k'} = 1 - \sum_{k=1}^{|y|} p_k^2 \qquad Gini_i(D, a) = \sum_{\nu=1}^{|v|} \frac{|D^{\nu}|}{|D|} Gini(D^{\nu})$$

The lower Gini(D), the more purity of Dataset D.Select mini $Gini_i(D, a)$ as decision attribute.

In order to avoid overfitting problem, we use pruning to improve accuracy.

Continuous attributes — bi-nartition		表 4.3 西瓜数据集 3.0								
continuous attributes bi partition	编号	色泽	根蒂	敲声	纹理	脐部	触感	密度	含糖率	好瓜
	1	青绿	蜷缩	浊响	清晰	凹陷	硬滑	0.697	0.460	是
	2	乌黑	蜷缩.	沉闷	清晰	凹陷	硬滑	0.774	0.376	是
$\left(a^{i}+a^{i+1}\right)$	4	与羔青绿	蜷缩	流闷	清晰	凹陷	硬滑	$0.634 \\ 0.608$	$0.204 \\ 0.318$	是
$T_{r} = \left\{ \frac{a^{r} + a^{r-r}}{2} \mid 1 < i < n-1 \right\}$	5	浅白	蜷缩	浊响	清晰	凹陷	硬滑	0.556	0.215	是
a 2 $1 = v = n - 1$	6	青绿	稍蜷	浊响	清晰	稍凹	软粘	0.403	0.237	是
	.8	乌黑	稍蜷	浊响	清晰	稍凹	秋 柏 硬滑	0.481 0.437	$0.149 \\ 0.211$	定是
T as a node to calculate entropy and gain	9	乌黑	稍蜷	沉闷	稍糊	稍凹	硬滑	0.666	0.091	否
r _a as a hoad to calculate chinopy and gain	10	青绿	硬挺	清脆	清晰	平坦	软粘	0.243	0.267	否不
1 - 21	11	浅白 浅白	便挺 蜷缩	洧 加 向	候砌 模糊	平坦 平坦	便須 软粘	0.245 0.343	0.057	省否
$\sum D_t^{n} = \langle D \rangle$	13	青绿	稍蜷	浊响	稍糊	凹陷	硬滑	0.639	0.161	否
$Gain(D, a) = \max_{t \in T} Gain(D, a, t) = \max_{t \in T} Ent(D) - \sum_{t \in T} Ent(D_t^n)$	14	浅白	稍蜷	沉闷	稍糊	凹陷	硬滑	0.657	0.198	否
$\iota \in I_a$ $\iota \in I_a$ $\lambda \in \{-,+\}$	15 16	与黒 浅白	相略端	/ 田	清 晰 植糊	相凹 平田	软粘	0.360 0.593	0.370 0.042	省否
	17	青绿	蜷缩	沉闷	稍糊	稍凹	硬滑	0.719	0.103	否
e.g. $T = \frac{0.243 + 0.245}{2} = 0.244$ $T = \frac{0.245 + 0.343}{2} = 0.294$										
$T_{\text{density}} = \{0.244, 0.294, 0.351, 0.381, 0.420, 0.459, 0.518, 0.574, 0.600, 0.621, 0.459, 0.518, 0.574, 0.600, 0.621, 0.459, 0.518, 0.574, 0.600, 0.621, 0.459, 0.518, 0.574, 0.600, 0.621, 0.459, 0.518, 0.574, 0.600, 0.621, 0.459, 0.518, 0.574, 0.600, 0.621, 0.459, 0.518, 0.574, 0.600, 0.621, 0.459, 0.518, 0.574, 0.600, 0.621, 0.459, 0.518, 0.574, 0.600, 0.621, 0.459, 0.518, 0.574, 0.600, 0.621, 0.459, 0.518, 0.574, 0.600, 0.621, 0.459, 0.518, 0.574, 0.600, 0.621, 0.459, 0.518, 0.574, 0.600, 0.621, 0.459, 0.518, 0.574, 0.600, 0.621, 0.459, 0.518, 0.574, 0.600, 0.621, 0.459, 0.518, 0.574, 0.600, 0.621, 0.459, 0.518, 0.574, 0.600, 0.621, 0.459, 0.518, 0.574, 0.600, 0.621, 0.574, 0.600, 0.621, 0.574, 0.600, 0.621, 0.574, 0.600, 0.621, 0.574, 0.600, 0.621, 0.574, 0.600, 0.621, 0.574, 0.600, 0.621, 0.574, 0.600, 0.621, 0.574, 0.600, 0.621, 0.574, 0.600, 0.621, 0.574, 0.600, 0.621, 0.574, 0.600, 0.621, 0.574, 0.600, 0.621, 0.574, 0.600, 0.621, 0.574, 0.600, 0.621, 0.574, 0.600, 0.621, 0.574, 0.600, 0.621, 0.574, 0.600, 0.621, 0.574, 0.574, 0.600, 0.621, 0.574, 0.574, 0.600, 0.621, 0.574, 0.600, 0.621, 0.574, 0.600, 0.621, 0.574, 0.600, 0.621, 0.574, 0.600, 0.621, 0.574, 0.600, 0.621, 0.574, 0.600, 0.621, 0.574, 0.600, 0.621, 0.574, 0.574, 0.600, 0.621, 0.574, 0.600, 0.621, 0.574, 0.574, 0.600, 0.621, 0.574, 0.5$.636	,0.64	8,0.	661,	0.68	1,0.7	708,0	0.746		
$Ent(D, a, -0.244) = -(0\log_2 0 + 1\log_2 1) = 0 Ent(D, a, +0.244) =$	$-\left(\frac{8}{1}\right)$	3 6 6	$\frac{8}{32}\frac{8}{16}$	$\frac{1}{5} + \frac{3}{1}$	$\frac{8}{6}$ log	$\frac{8}{g_2}\frac{8}{16}$	<u>5</u>	X		
$Gain(D, density, 0.244) = Ent(D) - \left(\frac{16}{17} * 1 + \frac{1}{17} * 0\right) = 0.998 - 0.941$	l = 0	.057	7							

			表	4.4 西瓜	《数据集2	2.0α		d tz m						
Missing value	编号	色泽	根蒂	敲声	纹理	脐部	触感	好瓜						
	$\frac{1}{2}$	- 乌黑	蜷缩 蜷缩	浊响 沉闷	清晰 清晰	凹陷 凹陷	硬滑	是 是						
We give those not missing value a weight, and modify the function	3	乌黑	蜷缩	— 河 际J	清晰	凹陷	硬滑	是是						
$\sum_{\boldsymbol{x}\in\tilde{D}} w_{\boldsymbol{x}}$	5		蜷缩	浊响	清晰	凹陷	硬滑	是						
$p = \sum_{\boldsymbol{x} \in D} w_{\boldsymbol{x}}$	6	育绿 乌黑	相蜷	浊响	清晰	稍凹	软粘	走是						
$ ilde{p}_k = rac{\sum_{oldsymbol{x}\in ilde{D}_k}w_{oldsymbol{x}}}{\sum} (1\leqslant k\leqslant \mathcal{Y}) \;,$	8	 	稍蜷	<u>油响</u>		利四								
$\sum_{\boldsymbol{x}\in\tilde{D}}w_{\boldsymbol{x}}$	9 10	与焉	硬挺	清脆	113 193 —	平坦		否						
$\tilde{r}_v = \frac{\sum_{\boldsymbol{x} \in \tilde{D}^v} w_{\boldsymbol{x}}}{\sum_{\boldsymbol{x} \in \tilde{D}} w_{\boldsymbol{x}}} (1 \leq v \leq V) \; .$	$\frac{11}{12}$	浅白 浅白	便挺 蜷缩	清脆	模糊 模糊	半坦 平坦	软粘	省否						
$\sum x \in D$ ω $ \mathcal{Y} $	13 14	~ 浅白	稍 蜷 稍蜷	浊响 沉闷	稍糊	凹陷 凹陷	硬滑 硬滑	否否						
$\operatorname{Gain}(D, a) = \rho \times \operatorname{Gain}(\tilde{D}, a)$ $\operatorname{Ent}(\tilde{D}) = -\sum \tilde{p}_k \log_2 \tilde{p}_k$.	15 16	乌黑	稍蜷缩	浊响	清晰		软粘	否否						
$= a \times \left(\operatorname{Ent} \left(\tilde{D} \right) - \sum_{v=1}^{V} \tilde{v} \operatorname{Ent} \left(\tilde{D}^{v} \right) \right)$	17	青绿	平 区 21日 	沉闷	稍糊	利凹	硬滑	否						
$= p \land \left(\operatorname{Ent} \left(D \right) - \sum_{v=1}^{n} i_v \operatorname{Ent} \left(D \right) \right)$	1 4					£								
e.g. Ent(color): $Ent(\widetilde{D}) = -\sum_{k=1}^{2} \widetilde{p}_k \log_2 \widetilde{p}_k = -\left(\frac{6}{14}\log_2 \frac{6}{14} + \frac{8}{14}\log_2 \frac{6}{14}\right)$	$\frac{8}{14}$	= 0.	.985											
$Ent(\widetilde{D}^{1}) = -\left(\frac{2}{4}\log_{2}\frac{2}{4} + \frac{2}{4}\log_{2}\frac{2}{4}\right) = 1 \qquad Ent(\widetilde{D}^{2}) = -\left(\frac{4}{6}\log_{2}\frac{4}{6} + \frac{2}{6}\log_{2}\frac{4}{6}\right) = 1$	$\log_2 \frac{2}{6}$	$\left(\frac{2}{5}\right) = 0$).918		/,									
$Ent(\widetilde{D}^{3}) = -\left(\frac{0}{4}\log_{2}\frac{0}{4} + \frac{4}{4}\log_{2}\frac{4}{4}\right) = 0$														
$Gain(\widetilde{D}, color) = Ent(\widetilde{D}) - \sum_{\nu=1} \widetilde{\gamma}_{\nu} Ent(\widetilde{D}^{\nu}) = 0.985 - \left(\frac{4}{14} * 1 + \frac{6}{14} * 0\right)$.918	$+\frac{4}{14}$	* 0) 4	= 0.30	06									

Decision tree application

Classify something like whether a product qualify or not Bank pass the applicant of Credit Card or not

Auxiliary medical system

2. Neural Networks

What is neural networks?

Neural networks include three parts: ①Architecture ②Activity function ③Learning rule Neural networks include single-layer network call Perceptron and multi-layer networks

How neural networks works?

Perceptron consist of two layers: input 、output.Perceptron easily solves "A,V, ¬"problem.

Activity function: $sgn(x) = \begin{cases} 1, & x \ge 0; \\ 0, & x < 0; \end{cases}$ $y = f(\sum_{i} w_i x_i - \theta)$ $x_1 \wedge x_2$ set $w_1 = w_2 = 1, \theta = 2$ $y = f(1 * x_1 + 1 * x_2 - 2)$ e.g. Only when $x_1 = x_2 = 1, y = 1$ $x_1 \vee x_2$ set $w_1 = w_2 = 1, \theta = 0.5$ $y = f(1 * x_1 + 1 * x_2 - 0.5)$ Only when $x_1 = 1$ or $x_2 = 1$, y = 1 $\neg x_1$ set $w_1 = -0.6, w_2 = 0, \theta = -0.5$ $y = f(-0.6 * x_1 + 0 * x_2 + 0.5)$ when $x_1 = 1$, y = 0; when $x_1 = 0$, y = 1

Other parameters update:

$\Delta heta_j = -\eta g_j \; ,$	$e_h = -rac{\partial E_k}{\partial h} \cdot rac{\partial b_h}{\partial a_h}$	$=\sum_{i}^{l} w_{hi} g_{i} f'(\alpha_{h} - \gamma_{h})$
$\Delta v_{ih} = \eta e_h x_i \; ,$	$\frac{l}{dE} \partial E = \partial \beta$	j=1
$\Delta \gamma_h = -\eta e_h \; ,$	$=-\sum_{j=1}rac{\partial D_k}{\partialeta_j}\cdotrac{\partialeta_j}{\partial b_h}f'(lpha_h-\gamma_h)$	$= b_h (1 - b_h) \sum_{j=1}^{l} w_{hj} g_j \; .$

Aim to minimize $E = \frac{1}{m} \sum_{k=1}^{m} E_k$

An unsolved question: how accumulated error backpropagation works?

Sometime E traps into local minimum, but it is not the global minimum.
Solution: 1. use another original value and start again, after serval trial, select the minimum E.
2. use simulated annealing technology, every step has a rate to accept a worsen result.
3. random Stochastic Gradient Descent.
4. genetic algorithms

Neural networks Application

(1)Image identification

②Voice Recognition

3. Bayes classifier

(1) Based on Bayesian decision theory Every sample probability is known

 $R(c_i|x) = \sum_{j=1}^{N} \lambda_{ij} P(c_i|x) \qquad \begin{array}{l} \lambda_{ij} \text{ is the loss of recognize } c_j \text{ instead of } c_i \\ R(c_i|x) \text{ is the sample x total conditional risk.} \\ \text{Aim to reduce the total risk.} \end{array}$

If h can minimize the conditional risk, the total risk R(h) can reduce at the same time $h^*(x) = arg_{c \in Y}minR(c|x)$ $h^*(x)$ call Bayes optimal classifier, $R(h^*)$ Bayes risk

If aim to minimize the error rate

 $\lambda_{ij} = \begin{cases} 0, & if \ i = j; \\ 1, & otherwise \end{cases}$ R(c|x) = 1 - P(c|x) $h^*(x) = arg_{c \in Y}maxR(c|x)$ So maximize P(c|x) can minimize the R(c|x) $P(c|x) = \frac{P(x|c)P(c)}{P(x)}$

Parameter P(c|x) need to be calculated, use Maximum Likelihood Estimation

set $P(c|x) = P(c|\theta_c)$ Sample x are in Class c, D_c include all sample x

$$P(D_c|\theta_c) = \prod_{x \in D_c} P(x|\theta_c)$$

But we usually use $LL(\theta_c) = \log P(D_c | \theta_c) = \sum_{x \in D_c} \log P(x | \theta_c)$

 $\hat{\theta}_c = arg_{\theta_c} \max LL(\theta_c)$

If parameter is continuous-value, we typically assume that $P(c|x) \sim N(\mu_c, \sigma_c^2)$ that

$$\hat{\mu}_{c} = \frac{1}{|D_{c}|} \sum_{x \in D_{c}} x \qquad \qquad \hat{\sigma}_{c}^{2} = \frac{1}{|D_{c}|} \sum_{x \in D_{c}} (x - \hat{\mu}_{c}) (x - \hat{\mu}_{c})^{T}$$

Naïve Bayes classifier

Naïve bayes classifier adopt attribute conditional independence assumption. So

$$P(c|x) = \frac{P(x|c)P(c)}{P(x)} = \frac{P(c)}{P(x)} \prod_{i=1}^{d} P(x_i|c)$$
$$P(c) = \frac{|D_c|}{|D|} \qquad P(x_i|c) = \frac{|D_{c,x_i}|}{|D_c|}$$

$$h_{nb}(x) = \arg_{c \in Y} \max P(c) \prod_{i=1}^{d} P(x_i | c)$$

Continuous attribute

$$p(x_i|c) = \frac{1}{\sqrt{2\pi}\sigma_{c,i}} \exp(-\frac{(x_i - \mu_{c,i})^2}{2\sigma_{c,i}^2})$$

In order to avoid missing some attribute, use Laplacian correction

$$\hat{P}(c) = rac{|D_c| + 1}{|D| + N} \; ,$$

 $\hat{P}(x_i \mid c) = rac{|D_{c,x_i}| + 1}{|D_c| + N_i}$

e.g. $P(good) = \frac{8}{17} = 0.471$ 根蒂 敲声 色泽 纹理 $P(good) = \frac{7}{17} = 0.529$ 浊响 清晰 青绿 蜷缩 $P(green | good) = \frac{3}{8} = 0.375$ $P(green | bad) = \frac{3}{6} = 0.333$ $P(curve | good) = \frac{3}{8} = 0.375$ $P(curve | bad) = \frac{3}{2} = 0.333$ P(density=0.697 | good) = $\frac{1}{\sqrt{2\pi} * 0.129} \exp\left(-\frac{(0.697 - 0.574)^2}{2 * 0.129^2}\right) = 1.959$ P(density=0.697 | bad) = $\frac{1}{\sqrt{2\pi} * 0.129} \exp\left(-\frac{(0.697 - 0.574)^2}{2 * 0.129^2}\right) = 1.203$ P(good) = 0.471*0.375*1.959*... = 0.063 $P(bad)=0.529 * 0.333 * 0.333 * \dots = 6.80 * 10^{-5}$

脐部

凹陷

触感

硬滑

密度

0.697

含糖率

0.460

好瓜

?

P(good)>P(bad), so this sample is good one

Semi-Naïve Bayes classifier

One-Dependent Estimator

Assume that every attribute depend on at most one non-class attribute.

$$P(c \mid oldsymbol{x}) \propto P(c) \prod_{i=1}^d P(x_i \mid c, pa_i)$$

To solve the problem,need to find out the parent. If each attribute depend on the same attribute, called Super-parent ODE like the model(b). Model (c) Tree Augemented naïve Bayes is based on maximum weighted spanning tree, at last simplify Into tree.

$$I(x_i, x_j \mid y) = \sum_{x_i, x_j; \ c \in \mathcal{Y}} P(x_i, x_j \mid c) \log \frac{P(x_i, x_j \mid c)}{P(x_i \mid c)P(x_j \mid c)}$$

Bayesian network

Use Directed Acyclic Graph to describe the relationship between attributes And Conditional Probability Table display the joint distribution probability.

 $B = \langle G, \Theta \rangle$ G is Directed Acyclic Graph. Θ is parameter.

joint distribution probability: $P_B(x_1, x_2, ..., x_d) = \prod_{i=1}^d P_B(x_i | \pi_i) = \prod_{i=1}^d \theta_{x_i | \pi_i}$

e.g.

 $P(x_1, x_2, x_3, x_4, x_5) = P(x_1)P(x_2)P(x_3|x_1)P(x_4|x_1, x_2)P(x_5|x_2)$

Determine the structure

Method: 1.Create a moral graph Add edges between all pairs of nodes having a common child. Remove all directions 2.Find out all conditional independent ralationship

 $x_3 \perp x_4 | x_1, x_4 \perp x_5 | x_2, x_3 \perp x_2 | x_1, x_3 \perp x_5 | x_1, x_3 \perp x_5 | x_2 \leftarrow$

根蒂

蜷缩

0.9

0.3

硬挺

甜高 0.1 度低 0.7

 $(x_1(好瓜$

 (x_4) 色泽

(x2(甜度

(x5(根蒂

Learning

Determining the graphical structure
 Determining the conditional probabilities

③ Define a score function to assess beyesian network

Minimal Description Length Criterion

Dataset D={ $x_1, x_2, ..., x_m$ }, Beyesian network B=(G, Θ)

Score function: $s(B|D) = f(\theta)|B| - LL(B|D)$

$$LL(B|D) = \sum_{i=1}^{m} \log P_B(x_i)$$

| B | is the number of parameters $f(\theta)$ is the length of each θ

If $f(\theta)=1$, AIC(B|D) = s(B|D) = |B| - LL(B|D)If $f(\theta)=\frac{1}{2}\log m$, BIC(B|D) = $s(B|D) = \frac{1}{2}\log m |B| - LL(B|D)$ $f(\theta)$ is constant, $\hat{\theta}_{x_i|\pi_i} = \hat{P}_D(x_i|\pi_i)$, to minimize s(B|D) is to search the structure. But it is hard to solve, use Gibbs sampling to solve.

Gibbs sampling

1: $n_q = 0$ 2: q⁰=对 Q 随机赋初值 3: for t = 1, 2, ..., T do 4: for $Q_i \in Q$ do 5: Z = E U $Q \setminus \{Q_i\}$; 6: $z = e \cup q^{t-1} \setminus \{q_i^{t-1}\};$ 7: 根据 B 计算分布 *P_B(Q_i* | Z = z); 8: q^t =根据 $P_B(Q_i | Z = Z)$ 采样所获 Q_i 取值; 9: q^{t} =将 q^{t-1} 中的 q_{i}^{t-1} 用 q_{i}^{t} 替换 10: end for 11: if $q^t = q$ then 12: $n_q = n_q + 1$ 13: end if 14: end for 输出: P(Q = q | E = e) $\cong \frac{n_q}{\tau}$

Application

Auto classifier words filter/corrector Medical application Rank system

4. Which is difficult to realize?

That's all thank you!